
Algorithms for Quad-Double Precision Floating Point Arithmetic�

Yozo Hiday Xiaoye S. Liz David H. Baileyz

October 30, 2000

Abstract

A quad-double number is an unevaluated sum of four IEEE double precision numbers, ca-

pable of representing at least 212 bits of signi�cand. We present the algorithms for various

arithmetic operations (including the four basic operations and various algebraic and transcen-

dental operations) on quad-double numbers. The performance of the algorithms, implemented

in C++, is also presented.

1 Introduction

Multiprecision computation has a variety of application areas, such as pure mathematics, study of

mathematical constants, cryptography, and computational geometry. Because of this, many arbi-

trary precision algorithms and libraries have been developed using only the �xed precision arith-

metic. They can be divided into two groups based on the way precision numbers are represented.

Some libraries store numbers in a multiple-digit format, with a sequence of digits coupled with a sin-

gle exponent, such as the symbolic computation package Mathematica, Bailey's MPFUN [2], Brent's

MP [4] and GNU MP [7]. An alternative approach is to store numbers in a multiple-component for-

mat, where a number is expressed as unevaluated sums of ordinary
oating-point words, each with

its own signi�cand and exponent. Examples of this format include [6, 10, 11]. The multiple-digit

�This research was supported by the Director, OÆce of Science, Division of Mathematical, Information, and

Computational Sciences of the U.S. Department of Energy under contract number DE-AC03-76SF00098.
yComputer Science Division, University of California, Berkeley, CA 94720 (yozo@cs.berkeley.edu).
zNERSC, Lawrence Berkeley National Laboratory, 1 Cycloton Rd, Berkeley, CA 94720 (xiaoye@nersc.gov,

dhbailey@lbl.gov).

1

approach can represent a much larger range of numbers, whereas the multiple-component approach

has the advantage in speed.

We note that many applications would get full bene�t from using merely a small multiple of

(such as twice or quadruple) the working precision, without the need for arbitrary precision. The

algorithms for this kind of \�xed" precision can be made signi�cantly faster than those for arbitrary

precision. Bailey [1] and Briggs [5] have developed algorithms and software for \double-double"

precision, twice the double precision. They used the multiple-component format, where a double-

double number is represented as an unevaluated sum of a leading double and a trailing double.

In this paper, we present some algorithms for \quad-double" numbers, in other words, numbers

with four times the double precision. We use the multiple-component format to take advantage

of speed. A quad-double number is an unevaluated sum of four IEEE doubles. The quad-double

number (a0; a1; a2; a3) represents the exact sum a = a0+a1+a2+a3, where a0 is the most sig�cant

component. We have designed and implemented algorithms for basic arithmetic operations, as well

as some algebraic and transcendental functions. We have performed extensive correctness tests and

compared the results with arbitrary precision package MPFUN. See [8] for more details about the

software.

The rest of the paper is organized as follows. Section 2 describes some basic properties of

IEEE
oating point arithmetic and the building blocks used in the quad-double algorithms. In

Section 3 we present the quad-double algorithms for basic operations, including renormization,

addition, multiplication and division. Section 4 presents the algorithms for some algebraic and

transcendental functions. Section 5 presents the timing results of the C++ implementation on

various architectures. Section 6 gives a summary and discusses future work.

2 Preliminaries

In this section, we present some basic properties and algorithms of IEEE
oating point arithmetic

used in quad-double arithmetic. These results are based on Dekker [6], Knuth [9], Priest [10],

Shewchuk [11], and others.

All basic arithmetics are assumed to be performed in IEEE double format, with round-to-even

rounding on ties. For any binary operator � 2 f+;�;�; =g, we use
(a � b) = a � b to denote the

2

oating point result of a � b, and de�ne err(a � b) as a � b =
(a � b) + err(a � b). Throughout this

paper, " = 2�53 is the machine epsilon for IEEE double precision numbers, and "qd = 2�211 is the

precision one expects for quad-double numbers.

Lemma 1. [11, p. 310] Let a and b be two p-bit
oating point numbers such that jaj � jbj. Then

jerr(a+ b)j � jbj � jaj.

Lemma 2. [11, p. 311] Let a and b be two p-bit
oating point numbers. Then err(a + b) =

(a+ b)�
(a+ b) is representable as a p-bit
oating point number.

Algorithm 3. [11, p. 312] The following algorithm computes s =
(a + b) and e = err(a + b),

assuming jaj � jbj.

Quick-Two-Sum(a; b)

1. s a� b

2. e b	 (s	 a)

3. return (s; e)

Algorithm 4. [11, p. 314] The following algorithm computes s =
(a+ b) and e = err(a+b). This

algorithm uses three more
oating point operations instead of a branch.

Two-Sum(a; b)

1. s a� b

2. v s 	 a

3. e (a	 (s	 v))� (b	 v)

4. return (s; e)

Algorithm 5. [11, p. 325] The following algorithm splits a 53-bit IEEE double precision
oating

point number into ahi and alo, each with 26 bits of signi�cand, such that a = ahi + alo. ahi will

contain the �rst 26 bits, while alo will contain the lower 26 bits.

Split(a)

1. t (227 + 1)
 a

2. ahi t 	 (t	 a)

3. alo a	 ahi

4. return (ahi; alo)

3

Algorithm 6. [11, p. 326] The following algorithm computes p =
(a� b) and e = err(a� b).

Two-Prod(a; b)

1. p a
 b

2. (ahi; alo) Split(a)

3. (bhi; blo) Split(b)

4. e ((ahi
 bhi 	 p)� ahi
 blo � alo
 bhi)� alo
 blo

5. return (p; e)

Some machines have a fused multiply-add instruction (FMA) that can evaluate expression such

as a � b � c with a single rounding error. We can take advantage of this instruction to compute

exact product of two
oating point numbers much faster. These machines include IBM Power series

(including the PowerPC), on which this simpli�cation is tested.

Algorithm 7. The following algorithm computes p =
(a � b) and e = err(a � b) on a machine

with a FMA instruction. Note that some compilers emit FMA instructions for a � b + c but not

for a� b� c; in this case, some sign adjustments must be made.

Two-Prod-FMA(a; b)

1. p a
 b

2. e
(a� b� p)

3. return (p; e)

The algorithms presented are the basic building blocks of quad-double arithmetic, and are

represented in Figures 1, 2, and 3. Symbols for normal double precision sum and product are in

Figure 4.

3 Basic Operations

3.1 Renormalization

A quad-double number is an unevaluated sum of four IEEE double numbers. The quad-double

number (a0; a1; a2; a3) represents the exact sum a = a0 + a1 + a2 + a3. Note that for any given

representable number x, there can be many representations as an unevaluated sum of four doubles.

4

a

b

s

e

Figure 1: Quick-Two-Sum

a

b

s

e

Figure 2: Two-Sum

a

b e

p

Figure 3: Two-Prod

Figure 4: Normal IEEE double precision sum and product

Hence we require that the quadruple (a0; a1; a2; a3) to satisfy

jai+1j � 1

2
ulp(ai)

for i = 0; 1; 2, with equality occurring only if ai = 0 or the last bit of ai is 0 (that is, round-to-even

is used in case of ties). Note that the �rst double a0 is a double-precision approximation to the

quad-double number a, accurate to almost half an ulp.

Lemma 8. For any quad-double number a = (a0; a1; a2; a3), the normalized representation is

unique.

Most of the algorithms described here produce an expansion that is not of canonical form |

often having overlapping bits. Therefore, a �ve-term expansion is produced, and then renormalized

to four components.

Algorithm 9. This renormalization procedure is a variant of Priest's renormalization method [10,

p. 116]. The input is a �ve-term expansion with limited overlapping bits, with a0 being the most

signi�cant component.

5

Renormalize(a0; a1; a2; a3; a4)

1. (s; t4) Quick-Two-Sum(a3; a4)

2. (s; t3) Quick-Two-Sum(a2; s)

3. (s; t2) Quick-Two-Sum(a1; s)

4. (t0; t1) Quick-Two-Sum(a0; s)

5. s t0

6. k 0

7. for1 i 1; 2; 3; 4

8. (s; e) Quick-Two-Sum(s; ti)

9. if e 6= 0

10. bk s

11. s e

12. k k + 1

13. end if

14. end for

15. return (b0; b1; b2; b3)

Necessary conditions for this renormalization algorithm to work correctly are, unfortunately,

not known. Priest proves that if the input expansion does not overlap by more than 51 bits,

then the algorithm works correctly. However, this condition is by no means necessary; that the

renormalization algorithm (Algorithm 9) works on all the expansions produced by the algorithms

below remains to be shown.

3.2 Addition

Quad-Double + Double. The addition of a double precision number to a quad-double number is

similar to Shewchuk'sGrow-Expansion [11, p. 316], but the double precision number b is added to

a quad-double number a from most signi�cant component �rst (rather than from least signi�cant).

This produces a �ve-term expansion which is the exact result, which is then renormalized. See

Figure 5.

Since the exact result is computed, then normalized to four components, this addition is accurate

1In the implementation, this loop is unrolled to several if statements.

6

b

Renormalization

a
0

a
1

a
2

a
3

s
3

s
21

s
0

s

Figure 5: Quad-Double + Double

to at least the �rst 212 bits of the result.

Quad-Double + Quad-Double. We have implemented two algorithms for addition. The �rst

one is faster, but only satis�es the weaker (Cray-style) error bound a � b = (1 + Æ1)a + (1 + Æ2)b

where the magnitude of Æ1 and Æ2 is bounded by "qd = 2�211.

Figure 6 best describes the �rst addition algorithm of two quad-double numbers. In the diagram,

there are three large boxes with three inputs to them. These are various Three-Sum boxes, and

their internals are shown in Figure 7.

Now for a few more lemmas.

Lemma 10. Let a and b be two double precision
oating point numbers. Let M = max(jaj; jbj).
Then j
(a+ b)j � 2M , and consequently, jerr(a+ b)j � 1

2
ulp(2M) � 2"M .

Lemma 11. Let x; y; and z be inputs to Three-Sum. Let u; v; w; r0; r1; and r2 be as indicated in

Figure 7. Let M = max(jxj; jyj; jzj). Then jr0j � 4M , jr1j � 8"M , and jr2j � 8"2M .

Proof. This follows from applying Lemma 10 to each of the three Two-Sum boxes. First Two-Sum

gives juj � 2M and jvj � 2"M . Next Two-Sum (adding u and z) gives jr0j � 4M and jwj � 4"M .

Finally, the last Two-Sum gives the desired result.

Note that the two other Three-Sums shown are simpli�cation of the �rst Three-Sum, where

it only computes one or two components, instead of three; thus the same bounds apply.

The above bound is not at all tight; jr0j is bounded closer to 3M (or even jxj+ jyj+ jzj), and this

7

Renormalization

a
3

a
2

a
1

a

b
0

b
1

b
2

b3

0

s
0

s
1

s
2

s
3

Figure 6: Quad-Double + Quad-Double

r
1

r
2

y

x

z

u

v

w

r
0

r
0

r
1

x

y

z

r
0

x

y

z

Figure 7: Three-Sums

8

makes the bounds for r1 and r2 correspondingly smaller. However, this suÆces for the following

lemma.

Lemma 12. The �ve-term expansion before the renormalization step in the quad-double addition

algorithm shown in Figure 6 errs from the true result by less than "qdM , where M = max(jaj; jbj).

Proof. This can be shown by judiciously applying Lemmas 10 and 11 to all the Two-Sums and

Three-Sums in Figure 6. See [8] for a detailed proof.

Assuming that the renormalization step works (this remains to be proven), we can then obtain

the error bound

(a+ b) = (1 + Æ1)a+ (1 + Æ2)b with jÆ1j; jÆ2j � "qd:

Note that the above algorithm for addition is particularly suited to modern processors with

instruction level parallelism, since the �rst four Two-Sums can be evaluated in parallel. Lack of

branches before the renormalization step also helps to keep the pipelines full.

Note that the above algorithm does not satisfy the IEEE-style error bound

(a+ b) = (1 + Æ)(a+ b) with jÆj � 2"qd or so.

To see this, let a = (u; v; w; x) and b = (�u;�v; y; z), where none of w; x; y; z overlaps and jwj >
jxj > jyj > jzj. Then the above algorithm produces c = (w; x; y; 0) instead of c = (w; x; y; z)

required by the stricter bound.

The second algorithm, due to J. Shewchuk and S. Boldo, computes the �rst four components

of the result correctly. Thus it satis�es more strict error bound

(a+ b) = (1 + Æ)(a+ b) with jÆj � 2"qd or so.

However, it has a corresponding speed penalty; it runs signi�cantly slower (a factor of 2{3:5 slower).

The algorithm is similar to Shewchuk's Fast-Expansion-Sum [11, p. 320], where it merge-

sorts the two expansions. To prevent components with only a few signi�cant bits to be produced,

a double-length accumulator is used so that a component is output only if the inputs gets small

enough to not a�ect it.

Algorithm 13. Assuming that u; v is a two-term expansion, the following algorithm computes the

sum (u; v)+ x, and outputs the signi�cant component s if the remaining components contain more

9

than one double worth of signi�cand. u and v are modi�ed to represent the other two components

in the sum.

Double-Accumulate(u; v; x)

1. (s; v) Two-Sum(v; x)

2. (s; u) Two-Sum(u; s)

3. if u = 0

4. u s; s 0

5. end if

6. if v = 0

7. v u; u s; s 0

8. end if

9. return (s; u; v)

The accurate addition scheme is given by the following algorithm.

Algorithm 14. This algorithm computes the sum of two quad-double numbers a = (a0; a1; a2; a3)

and b = (b0; b1; b2; b3). Basically it merge-sorts the eight doubles, and performsDouble-Accumulate

until four components are obtained.

QD-Add-Accurate(a; b)

1. (x0; x1; : : : ; x7) Merge-Sort(a0; a1; a2; a3; b0; b1; b2; b3)

2. u 0; v 0; k 0; i 0

3. while k < 4 and i < 8 do

4. (s; u; v) Double-Accumulate(u; v; xi)

5. if s 6= 0

6. ck s; k k + 1

7. end if

8. i i+ 1

9. end while

10. if k < 2 then ck+1 v

11. if k < 3 then ck u

12. return Renormalize(c0; c1; c2; c3)

10

3.3 Subtraction

Subtraction a�b is implemented as the addition a+(�b), so it has the same algorithm and properties

as that of addition. To negate a quad-double number, we can just simply negate each component.

On a modern C++ compiler with inlining, the overhead is noticeable but not prohibitive (say 5%

or so).

3.4 Multiplication

Multiplication is basically done in a straightforward way, multiplying term by term and accumulat-

ing. Note that unlike addition, there are no possibilities of massive cancellation in multiplication,

so the following algorithms satisfy the IEEE style error bound a
 b = (1 + Æ)(a � b) where Æ is

bounded by "qd.

Renormalization

a
0 1

a a
2

a
3

ss
0

s
2

s
3

b

1

Figure 8: Quad-Double � Double

Quad-Double � Double. Let a = (a0; a1; a2; a3) be a quad-double number, and let b be a double

precision number. Then the product is the sum of four terms, a0b + a1b + a2b + a3b. Note that

11

Renormalization

(O)1 term

O terms

O ε2 terms

O ε3 terms

O ε4 terms

O ε3

O ε4

O ε3

O ε2

O ε4

s
3

s
21

ss
0

(

(

(

(

(

(

(

(

(

)

)

)

)

)

)

)

)

)

ε

Figure 9: Quad-Double � Quad-Double accumulation phase

ja3j � "3ja0j, so ja3bj � "3ja0bj, and thus only the �rst 53 bits of the product a3b need to be

computed. The �rst three terms are computed exactly using Two-Prod (or Two-Prod-FMA).

All the terms are then accumulated in a similar fashion as addition. See Figure 8.

Quad-Double � Quad-Double. Multiplication of two quad-double numbers becomes a bit

complicated, but nevertheless follows the same idea. Let a = (a0; a1; a2; a3) and b = (b0; b1; b2; b3)

be two quad-double numbers. Assume (without loss of generality) that a and b are order 1. After

multiplication, we need to accumulate 13 terms of order O("4) or higher.

a� b � a0b0 O(1) term

+ a0b1 + a1b0 O(") terms

+ a0b2 + a1b1 + a2b0 O("2) terms

+ a0b3 + a1b2 + a2b1 + a3b0 O("3) terms

+ a1b3 + a2b2 + a3b1 O("4) terms

12

Figure 10: Six-Three-Sum

Figure 11: Nine-Two-Sum

Note that smaller order terms (such as a2b3, which is O("5)) are not even computed, since they are

not needed to get the �rst 212 bits. The O("4) terms are computed using normal double precision

arithmetic, as only their �rst few bits are needed.

For i+ j � 3, let (pij ; qij) =Two-Prod(ai, bj). Then pij = O("i+j) and qij = O("i+j+1). Now

there are one term (p00) of order O(1), three (p01, p10, q00) of order O("), �ve (p02, p11, p20, q01,

q10) of order O("
2), seven of order O("3), and seven of order O("4). Now we can start accumulating

all the terms by their order, starting with O(") terms (see Figure 9).

In the diagram, there are four di�erent summation boxes. The �rst (topmost) one is Three-

Sum, same as the one in addition. The next three are, respectively, Six-Three-Sum (sums six

doubles and outputs the �rst three components), Nine-Two-Sum (sums nine doubles and outputs

the �rst two components), and Nine-One-Sum (just adds nine doubles using normal arithmetic).

Six-Three-Sum computes the sum of six doubles to three double worth of accuracy (i.e., to

relative error of O("3)). This is done by dividing the inputs into two groups of three, and performing

Three-Sum on each group. Then the two sums are added together, in a manner similar to quad-

13

double addition. See Figure 10.

Nine-Two-Sum computes the sum of nine doubles to double-double accuracy. This is done by

pairing the inputs to create four double-double numbers and a single double precision number, and

performing addition of two double-double numbers recursively until one arrives at a double-double

output. The double-double addition (the large square box in the diagram) is the same as David

Bailey's algorithm [1]. See Figure 11.

If one wishes to trade a few bits of accuracy for speed, we don't even need to compute the

O("4) terms; they can a�ect the �rst 212 bits only by carries during accumulation. In this case,

we can compute the O("3) terms using normal double precision arithmetic, thereby speeding up

multiplication considerably.

Squaring a quad-double number can be done signi�cantly faster since the number of terms that

needs to be accumulated can be reduced due to symmetry.

3.5 Division

Division is done by the familiar long division algorithm. Let a = (a0; a1; a2; a3) and b = (b0; b1; b2; b3)

be quad-double numbers. We can �rst compute an approximate quotient q0 = a0=b0. We then

compute the remainder r = a � q0 � b, and compute the correction term q1 = r0=b0. We can

continue this process to obtain �ve terms, q0; q1; q2; q3, and q4. (only four are needed if few bits

of accuracy is not important).

Note that at each step, full quad-double multiplication and subtraction must be done since most

of the bits will be canceled when computing q3 and q4. The �ve-term (or four-term) expansion is

then renormalized to obtain the quad-double quotient.

4 Algebraic and Transcendental Operations

N-th Power. N -th Power computes an, given a quad-double number a and an integer n. This is

simply done by repeated squaring [1].

Square Root. Square root computes
p
a given a quad-double number a. This is done with Newton

iteration on the function

f(x) =
1

x2
� a

14

which has the roots �a�1=2. This gives rise to the iteration

xi+1 = xi +
xi(1� ax2i)

2
:

Note that the iteration does not require division of quad-double numbers. (Multiplication by 1=2

can be done component-wise.) Since Newton's iteration is locally quadratically convergent, only

about two iterations are required if one starts out with double precision approximation x0 =
p
a0.

(In the implementation it is done three times.) After x = a�1=2 is computed, we perform a

multiplication to obtain
p
a = ax.

N-th Root. N -th Root computes n
p
a given a quad-double number a and an integer n. This is

done again by Newton's iteration on the function

f(x) =
1

xn
� a

which has the roots a�1=n. This gives rise to the iteration

xi+1 = xi +
xi(1� axni)

n
:

Three iterations are performed, although twice is almost suÆcient. After x = a�1=n is computed,

we can invert to obtain a1=n = 1=x.

Exponential. The classic Taylor-Maclaurin series is used to evaluate ex. Before using the Taylor

series, the argument is reduced by noting that

ekr+m log 2 = 2m(er)k;

where the integer m is chosen so thatm log 2 is closest to x. This way, we can make jkrj � 1
2
log 2 �

0:34657. Using k = 256, we have jrj � 1
512 log 2 � 0:001354. Now er can be evaluated using familiar

Taylor series. The argument reduction substantially speeds up the convergence of the series, as at

most 18 terms are need to be added in the Taylor series.

Logarithm. Since the Taylor series for logarithm converges much more slowly than the series for

exponential, instead we use Newton's iteration to �nd the zero of the function f(x) = ex � a. This

leads to the iteration

xi+1 = xi + ae�xi � 1;

15

which is repeated three times.

Trigonometrics. Sine and cosine are computed using Taylor series after argument reduction. To

compute sin x and cos x, the argument x is �rst reduced modulo 2�, so that jxj � �. Now noting

that sin(y + k�=2) and cos(y + k�=2) are of the form � sin y or � cos y for all integers k, we can

reduce the argument modulo �=2 so that we only need to compute sin y and cos y with jyj � �=4.

Finally, write y = z+m(�=1024) where the integerm is chosen so that jzj � �=2048 � 0:001534.

Since jyj � �=4, we can assume that jmj � 256. By using a precomputed table of sin(m�=1024)

and cos(m�=1024), we note that

sin(z +m�=1024) = sin z cos(m�=1024)+ cos z sin(m�=1024)

and similarly for cos(z + m�=1024). Using this argument reduction signi�cantly increases the

convergence rate of sine, as at most 10 terms need be added.

Note that if both cosine and sine are needed, then one can compute the cosine using the formula

cosx =
q
1� sin2 x:

The values of sin(m�=1024) and cos(m�=1024) are precomputed by using arbitrary precision

package such as MPFUN [2] using the formula

sin

�
�

2

�
=

1

2

p
2� 2 cos�

cos

�
�

2

�
=

1

2

p
2 + 2 cos �

Starting with cos � = �1, we can recursively use the above formula to obtain sin(m�=1024) and

cos(m�=1024).

Inverse Trigonometrics. Inverse trigonometric function arctan is computed using Newton iter-

ation on the function f(x) = sin x� a.

Hyperbolic Functions. Hyperbolic sine and cosine are computed using

sinh x =
ex � e�x

2
coshx =

ex + e�x

2

However, when x is small (say jxj � 0:01), the above formula for sinh becomes unstable, the Taylor

series is used instead.

16

5 Performance

We have implemented the above quad-double algorithms in ANSI C++. In this section, we demon-

strate the performance of the quad-double library.

Table 5 shows the measurements of various kernel operations on quad-double numbers on a

variety of machines. The machines, operating systems, compilers and optimizations we used are

listed below:

� Intel Pentium II, 400 MHz, Linux 2.2.16, g++ 2.95.2 compiler, with -O3 -funroll-loops

-finline-functions -mcpu=i686 -march=i686,

� Sun UltraSparc 333 MHz, SunOS 5.7, Sun CC 5.0 compiler, with -xO5 -native,

� PowerPC 750 (Apple G3), 266 MHz, Linux 2.2.15, g++ 2.95.2 compiler, with -O3 -funroll-

loops -finline-functions,

� IBM RS/6000 Power3, 200 MHz, AIX 3.4, IBM xlC compiler, with -O3 -qarch=pwr3 -qtune

=pwr3 -qstrict.

Our quad-double library was successfully used in a parallel vortex roll-up simulation [3], which

uses various transcendental functions as well as basic operations. On the NERSC IBM SP, using

256 Power3 processors, the quad-double version runs about four times as fast as the multiprecision

(MPFUN) version, and delivers almost identical results.

6 Summary and Future Work

In this paper, we presented the algorithms and performance of various operations on quad-double

precision numbers. The algorithms assume that a quad-double number is represented as an un-

evaluated sum of four IEEE double precision numbers. All the algorithms described in the paper

are implemented in a C++ library, taking full advantage of operator/function overloading and

user-de�ned data structures. In addition to the operations described above, the quad-double li-

brary contains miscellaneous supporting routines, such as input/output, comparisons, and random

number generation. The complete package and the details about its usage, testing and C/Fortran

interfaces can be found in [8].

17

Operation

Pentium II

400MHz

Linux 2.2.16

UltraSparc

333 MHz

SunOS 5.7

PowerPC 750

266 MHz

Linux 2.2.15

Power3

200 MHz

AIX 3.4

Quad-double

add 0.583 0.580 0.868 0.710

accurate add 1.280 2.464 2.468 1.551

mul 1.965 1.153 1.744 1.131

sloppy mul 1.016 0.860 1.177 0.875

div 5.267 6.440 8.210 6.699

sloppy div 4.080 4.163 6.200 4.979

sqrt 23.646 15.003 21.415 16.174

MPFUN

add 5.729 5.362 | 4.651

mul 7.624 7.630 | 5.837

div 10.102 10.164 | 9.180

Table 1: Performance of some Quad-Double algorithms on several machines. All measurements are

in microseconds. We include the performance of MPFUN [2] as a comparison. Note, we do not

have the MPFUN measurements on the PowerPC, because we do not have a Fortran-90 compiler.

We have yet to provide the full correctness proof for the basic routines. The correctness of these

routines rely on the fact that renormalization step works; Priest proves that it does work if the

input does not overlap by 51 bits and no three components overlap at a single bit. Whether such

overlap can occur in any of these algorithm needs to be proved.

There are improvements due in the remainder operator, which computes a � round(a=b) � b,

given quad-double numbers a and b. Currently, the library does the na��ve method of just divide,

round, multiply, and subtract. This leads to loss of accuracy when a is large compared to b. Since

this routine is used in argument reduction for exponentials, logarithms and trigonometrics, a �x is

needed.

A natural extention of this work is to extend the precision beyond quad-double. Algorithms for

18

quad-double additions and multiplication can be extended to higher precisions, however, with more

components, asymptotically faster algorithm due to S. Boldo and J. Shewchuk may be preferrable

(i.e. Algorithm 14). One limitation these higher precision expansions have is the limited exponent

range { same as that of double. Hence the maximum precision is about 2000 bits (39 components),

and this occurs only if the �rst component is near over
ow and the last near under
ow.

Acknowledgements

We thank Jonathan Shewchuk, Sylvie Boldo, and James Demmel for constructive discussions on

various basic algorithms. In particular, the accurate version of addition algorithm is due to S.

Boldo and J. Shewchuk. Problems with remainder was pointed out by J.Demmel.

References

[1] David H. Bailey. A fortran-90 double-double library. Available at http://www.nersc.gov/

~dhbailey/mpdist/mpdist.html.

[2] David H. Bailey. A fortran-90 based multiprecision system. ACM Transactions on Math-

ematical Software, 21(4):379{387, 1995. Software available at http://www.nersc.gov/

~dhbailey/mpdist/mpdist.html.

[3] David H. Bailey, Robert Krasny, and Richard Pelz. Multiple precision, multiple processor

vortex sheet roll-up computation. Proc. Sixth SIAM Conference on Parallel Processing for

Scienti�c Computing, pages 52{56, 1993.

[4] R. Brent. A Fortran multiple precision arithmetic package. ACM Trans. Math. Soft., 4:57{70,

1978.

[5] K. Briggs. Doubledouble
oating point arithmetic. http://www-epidem.plantsci.cam.ac.uk

/�kbriggs/doubledouble.html, 1998.

[6] T.J. Dekker. A
oating-point technique for extending the available precision. Numerische

Mathematik, 18:224{242, 1971.

[7] GMP. http://www.swox.com/gmp/.

19

[8] Yozo Hida, Xiaoye S. Li, and David H. Bailey. Quad-double arithmetic: Algo-

rithms, implementation, and application. Technical Report LBNL-46996, Lawrence

Berkeley National Laboratory, Berkeley, CA 94720, October 2000. Available at

http://www.nersc.gov/~dhbailey/mpdist/mpdist.html.

[9] Donald E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2.

Addison Wesley, Reading, Massachusetts, 1981.

[10] Douglas M. Priest. On Properties of Floating Point Arithmetics: Numerical Stability

and the Cost of Accurate Computations. PhD thesis, University of California, Berkeley,

November 1992. Available by anonymous FTP at ftp.icsi.berkeley.edu/pub/theory/

priest-thesis.ps.Z.

[11] Jonathan R. Shewchuk. Adaptive precision
oating-point arithmetic and fast robust geometric

predicates. Discrete & Computational Geometry, 18(3):305{363, 1997.

20

